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Outline

- What is and Why Role Analytics?



What Roles Are 600 e
W OO
- o ~ ™~
Role [Cambridge Dictionary] e a ¢
1) the position or purpose that someone or something has a & @
situation, organization, society, or relationship “ - “ R
2) the duty or use that someone or something usually has or is - e @ & e
expected to have | () ©
3) an actor's part in a film or play @ & a
Different notions of roles in computer science: 6 & & “ F’

sematic roles, social roles, structural roles, etc.

e.sf&ﬂ&

https://all-free-download.com/free-vector/download/us - ector 152771.html



https://all-free-download.com/free-vector/download/user-role-icon-vector_152771.html

Semantic Roles (linguistics perspective)

also known as thematic relations, are the various roles that a noun phrase may play with
respect to the action or state described by a governing verb, i.e the sentence's main verb.

For example,
“The police officer detained the suspect
at the scene of the crime”,
e The police officer is the doer of detaining — an agent;
e the suspectis the people that is detained —a theme.

Common roles include Who did what to whom at where!?
e Agent, Experiencer, Stimulus, Theme, Patient, I I I I
Location, Time, Beneficiary, etc.

The police officer detained the suspect at the scene of the crime

Agent Predicate Theme Location

https://web.stanford.edu/~jurafsky/slp3/slides/22 SRL.pdf



https://web.stanford.edu/%7Ejurafsky/slp3/slides/22_SRL.pdf

Social Roles (sociology perspective)

connected behaviors, rights, obligations,

beliefs, and norms as conceptualized by
people in a social situation

Role development can be influenced by
different factors:

- Societal influence

- Genetic predisposition

« Cultural influence

Situational influence

I8 n & . &
—~ m o on “T;
PR | b

https://www.ancient-egypt-online.com/



https://www.ancient-egypt-online.com/

Structural Roles (network perspective)

Peripheral

Bridge

—e_ )

S
Cliques

- capture functions that nodes play in a

network through node-level connectivity
patterns such as core, peripheral, cliques
and bridges, e.g.

- Bridges connect multiple communities and

could be useful on maximizing the spread
of influence over communities

. Cligues are the nodes who connect to each

other inside a community



Target in This Tutorial

Semantic Roles

Who did what to whom

I

at where!?

The police officer detained the suspect at the scene of the crime

Agent Predicate Theme

Social Roles

Structural Roles



Roles in Networks

Roles represent node-level connectivity

atterns, e.g., bridge, cliquey, isolated. ¢ bridge

P ) €.8., ge, cliquey, ® dicay
O periphery

Structural roles can also reflect other types A isolated

of roles

S
NP/\VP & g )
5N v v %@%%??ﬁﬁ £ @PrFE &

Ao dd %%WW&M*{W@WWM@%
?«A i ot b o eententeelelolelet, SO, L0y
cooks D N WY SR NSRRI AL AR AL AT TN f Ve S e TORAMAAAAAAAA S 1 A
MAMARSARA N RMAMARIARAKIA MSARADARIA DA KA X SARAASA KA Aovoverort

| | B AA LD AT AL DA L A5 LN D L L At A Bt B D A At A, Lt A, D 25 D A 5 It A A 2, A 2 I A I
AN Ty

the soup

| |
the chef | <7

Node and Graph Similarity: Theory and Applications, ICDM 2014 Tutorial



What is Role Analytics in Networks?

Role analytics is about identifying the roles that &
different nodes play in the network of interest. S

\%\(‘ ) L:: .

We need to define what roles are
e similar in structual features __
e equivalent in some relation __ Recorder

* |abeled data i o Participant
* prior knowledge L &



Role Analytics Methods

Role analytics can be solved using:
. Node classification (if labeled data is available)
. Node clustering (with role theories and/or representative features)

Equivalence-based
methods

Classification and clustering techniques can be

Similarity-based

applied in role analytics if they methods

- follow certain role theories, e.g., equivalence | gy anaiytics Blockmodek based
relatlons; or Feature-based

. capture features which are representative in methods

distinguishing different roles. | Embedding-based
methods



Problem Formulation

Input

A graph G={V, E} where Vis the set of nodes and
E is the set of edges.

Other types of graphs, e.g., temporal, attributed
Signed, heterogeneous networks.

Output
Discovery: 1) assignment of role of each node in

G and 2) groups of nodes where each group
contains nodes belonging to the same role.

Analysis: 1) interpretation of each role and/or 2)
transition of roles in temporal/dynamic
networks

Bridges

Followers

Centers @ @ ©® ©
000



Why Role Analytics in Networks?

* Social science: how to identify and understand the social positions
of individuals from social networks which consist of cyber or
physical social interactions

 Network science: how to study the structural
representations of complex networks,

e.g. social or biological networks

 Graph mining in computer science: how to group
nodes into clusters where nodes inside a cluster
share similar structural information




Applications of Role Analytics

e Opinion leader and
i information spread in
a7 (@ social networks
? ~ L ? & https://all-free-download.com/free-
X == ba R i | vector/download/social-network-
&= * concept-human-icons-connected-in-
L. e circle 6826089.html
V3 »
_ Spammer in social networks
Hub in [Fakhraei el al., KDD 2015] Structural function
transportatlon networks in brain networks

https://neurosciencenews.com/brain-network-structure-14435/



https://neurosciencenews.com/brain-network-structure-14435/
https://all-free-download.com/free-vector/download/social-network-concept-human-icons-connected-in-circle_6826089.html

Roles VS Communities

Roles VS Communities:

o Roles shown in different colors
o E.g., yellow nodes are bridges

« Communities shown inside the ellipses
o Denser internal connections inside
each community

N~




Roles VS Communities: Spatial Perspective

Communities

- To detect each community, what we need to
know is the local structural information.

- Detecting the left community does not require
the information of the right community

Roles

- For role discovery, we need to have a global view
of this graph.

- Node 1 and 2 may not be bridges after adding
these nodes and edges between them



Roles VS Communities: Perturbation Perspective

Roles Communities

- Role of node 4 and 5 does not change « The communities of node 4 and 5 are
because their global structural information changed, because their local structures are
stays the same. different. E.g., the neighbors of node 4 are

different.



Outline

- Equivalence Relations



Role Analytics Research Timeline

/ Automorphic Equivalence/S&&:astic Equivalence Network EmbEddiHA
Social Science, 1990s Machine Learning (ML), 2000s DM and ML, from 2015

Computer Science

Structural Equivalence Regular Equivalence Graph Mining Techniques

\@al Science, 1970s Social Science,@ Data Mining (DM), 2010s /




Equivalence Relation

» Formally, an equivalence relation E is any relation that satisfies

these three conditions:
o Transitivity: (a,b), (b,c)eE = (a,c)eE
o Symmetry: (a,b)eE < (b,a)eE
o Reflexivity: (a,a)€E
» Two nodes that have the same role are in an equivalence
relation.
» Structural, automorphic, regular and stochastic equivalence



Taxonomy of Equivalence Relations

Structural
Equivalence

Deterministic Automorphic
Equivalence Equivalence

- Regular
Equivalences Equivalence

Probabilistic Stochastic
Equivalence Equivalence




Structural Equivalence

» Two nodes u and v are structurally equivalent

e if, for all nodes, k=1,2,...,n (k#u, v), node u has an edge to k, if
and only if v also has an edge to k, and

* uy has an edge from k if and only if v also has an edge from k.

 Two nodes u and v are structurally equivalent if they have the
same relationships to all other nodes
= Rarely appears in real-world networks



Structural Equivalence

Seven structurally equivalent groups:

St CEO {5, 6},
Q/“/ Q ‘5\\. 3 Managers 125 85 14 7}

[‘/ \‘ O Cg \O] Employees Two structurally equivalent nodes
§ T g 9

should have exactly the
same relationships, e.g., node 5 and 6

n



Automorphic Equivalence

e Two nodes are automorphically equivalent if all the nodes
can be re-labeled to form an isomorphic graph with the
labels of u and v interchanged.

® An isomorphism of graphs G and H is a bijection between
the node sets of G and H: f: V(G) — V(H)

® such that any two nodes u and v of G are adjacent in G if and
only if f(u) and f(v) are adjacent in H.

https://en.wikipedia.org/wiki/Similarity (network science)



https://en.wikipedia.org/wiki/Similarity_(network_science)

Automorphic Equivalence

e Two automorphically equivalent nodes share exactly the
same label-independent properties.

e Nodes are automorphically equivalent if we can permute
the graph in such a way that exchanging the two nodes has
no effect on the distances among all nodes in the graph.

https://en.wikipedia.org/wiki/Similarity (network science)



https://en.wikipedia.org/wiki/Similarity_(network_science)

Automorphic Equivalence

E8L | ceo ® Two nodes u and v are
2 | N automorphically equivalent if they
 @: ©O: W Managers are exchangeable

[‘ O . o0 J Employees ® |f we change node 2 and 4, the

5 6 ? network structure will not be
Five automorphically equivalent groups:  changed

{5,6,8,9}, {2,4}, 4, {3}, {7}



Regular Equivalence

e Two nodes u and v are regularly equivalent if they are
equally related to equivalent others

e Regular equivalence is defined in a recursive way that two
regularly equivalent nodes have network neighbors which
are also regularly equivalent.



Regular Equivalence

| JOX J ceo
Pl AN

[ !/2 @®: \! 4 ] Managers
[\ [\
[‘ ‘ . ? ?] Employees

5 6 7

Three regularly equivalent groups:
12, 3, 4}
{5,6,7,8,9}
Two nodes u and v

are regularly equivalent if they
are equally related to equivalent others



Summary of Deterministic Equivalence Relations

5 6 7 8 9 5 6 7 8 9 D 6 7 8 9

Structural equivalence Automorphic equivalence Regular equivalence




Summary of Deterministic Equivalence Relations

Strictness of conditions:

structural eq > automorphic eq > regular eq

Regular Automorphic Structural
Equivalence Equivalence Equivalence

Practical values:

regular eq > automorphic eq > structural eq



Stochastic Equivalence

® Probabilistic version of structural equivalence

e Two nodesiand j are stochastically equivalent if they are
“exchangeable” w.r.t. a probability distribution

® The probability distribution of the graph must remain the
same when equivalent nodes are exchanged.

e Stochastic blockmodel (and its variants) to discover roles
based on stochastic equivalence



Outline

- Taxonomy of Role Analytics Methods



Taxonomy of Role Analytics Methods

Equivalence-based
methods

Similarity-based
methods

Role Analytics

Blockmodel-based
methods

Feature-based
methods

Embedding-based
methods

~__— Structural and regular
equivalence

— Graph theory related
methods

> Stochastic equivalence

— Data mining methods

" Neural network techniques



Equivalence-based Methods

Structural
Equivalence

Deterministic Automorphic
Equivalence Equivalence

Regular

Equivalences .
Equivalence

Blockmodel-based
Probabilistic Stochastic methods

Equivalence Equivalence



Structural Equivalence

[ Q‘ ] CEO Two nodes are structurally equivalent if
N they have the same relationships to all
O O O ] Employees ( A
7 8 4 CONCOR
Social Science b .
Structural STRUCTURE
Equivalence N J
" Nonnegative |
Data Mining Matrix Tri-
| Factorization |




CONCOR

* CONvergence of iterated CORrelations (CONCOR) is a hierarchical
divisive method to discover roles according to the definition of
structural equivalence.

* Procedure:

1. Calculate correlations, e.g., Pearson correlation, between rows (or
columns) repeatedly on the adjacency matrix until the resultant
correlation matrix consists of +1 and -1 entries;

2. Split the last correlation matrix into two structurally equivalent
submatrices (a.k.a. blocks): one with +1 entries, another with -1
entries.



CONCOR

The split in the 2" step can be further applied to submatrices in order to
produce a hierarchy

Nodes in the same submatrix belong to the same role

Z

_-

Procedure:

1. Compute correlations

2. Split the correlation matrix
into blocks




STRUCTURE

STRUCTURE is a hierarchical agglomerative approach. It consists of
three steps:

1. For each node u, create its feature vector by concatenating its
row and column vectors from the adjacency matrix;

2. For each pair of nodes (u,v), measure the square root of sum of
squared differences between the corresponding entries in their

feature vectors;

3. Merge entries in hierarchical fashion until their difference is less
than a predefined threshold.



CONCOR VS STRUCTURE

-

-

~

Calculate correlations between
rows (or columns) repeatedly on
the adjacency matrix

Split the last correlation matrix into
two structurally equivalent blocks

CONCOR/

[ Create its feature vector from@

adjacency matrix;

2. Measure the square root of sum
of squared differences
between pairs of nodes;

3. Merge entries in hierarchical
fashion until their difference is

less than a predefined threshold.

\\\ STRUCTURE




Nonnegative Matrix Tri-Factorization (NMTF)

X ‘ M| x Prn

X

AI‘L“I‘H CI‘l“?'ffI'
Objective: Optimization
: , 2 e multiplicative update rule
MIN 4 p HA o C’MPH;: e alternating direction method of

multipliers (ADMM)




NMTF-based Role Analytics Method

AH?‘H

min,. ,,
Adjacency matrix

{

—

CH”I’

Role membership matrix

X

_— -
A-CMC"| st C'C=1

err X

>

T
Cnxr

Role 1

Role 2

Role interaction
matrix/image matrix




NMTF Extensions

‘ Consider must-link
Semi-NMTF i
Incorporate. @ onmrer- [ECML-PKDD 2018] 22:;?;::?:”
orthogonality SCR -
constraint and spatial [KDD 2017] . supervision
continuity ® coctorBlock Hand!e noise and
regularization [CIKM 2013] sparsity of

networks



FactorBlock (Chan et al., CIKM 2013]

Role 1

Role 2

in the ideal case, the

he densitv of th H densities of the image matrix
use the density ot the grap entries should either be 0 or

as 1
a background model

i i m”;i " {A CMC J)(UH}*{‘ ideal J ldeal image matrix
U=A-R, where A is the a ad], . \ M. .. IS approximately
?a(’;rllax . defined as
ndR;=m/n Standard NMTF-based Role M. _ 1
ideal —

Analytics L+yemv(M=7)



O N I\/l Ft F_SCR [Bai et al., KDD 2017]

2

* Model structural equivalence relation A CMC

min,. ,, i

* Incorporate orthogonality constraint

and spatial continuity regularization spatial continuity
regularization

IR St e

* 0Oisareciprocal Gaussian Kernel e.m
matrix for each pair of nodes, which
is defir~A ~- orthogonality c
Iv; \ﬂz onstraint

(©)ij = e 207 ™ v, indicates the
spatial location of node i



SemI-NMTF (Ganii et al., ECML-PKDD 2018]

112
A-CMC! H;

min,. ,,

* take advantage of the existing information
that might be available about objects that
are known to be similar

: AT, : no ] :
min,. ,, |4 — CMC" ) +5(I —()o(Q,,*C)+=Co(Q,,+C)

,//2
* can help finding complex patterns, such as

hi hical o blockmodel Q,,, and Q, are non-negative
ierarchical or ring blockmodel structures .| v3lued matrices

guantifying the cost of violating
each of the must-link and
cannot-link constraints
respectively




NMTF Extensions

‘ Consider must-link
Semi-NMTF :
and cannot-link
Incorporate. ‘ONMFtF- [ECML-PKDD 2018] constraint as
orthogonality SCR -
constraint and spatial [KDD 2017] . Supervision
continuity ® FactorBlock Hand.Ie noise and
regularization [CIKM 2013] sparsity of
networks

ECML-PKDD 2020 Tutorial: https://sites.google.com/site/tutorialrole



https://sites.google.com/site/tutorialrole
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- Taxonomy of Role Analytics Methods



Taxonomy of Role Analytics Methods

Equivalence-based
methods

Similarity-based
methods

Role Analytics

Blockmodel-based
methods

Feature-based
methods

Embedding-based
methods

~__— Structural and regular
equivalence

— Graph theory related
methods

> Stochastic equivalence

— Data mining methods

" Neural network techniques



Similarity-based Methods

Partition/Clustering — Similarity

Connection Sim MatchSim NED
[Lin et al., CIKM 2009] [Zhu et al., VLDB 2017]

SimRank RoleSim StructSim
[Jeh and Widom, KDD 2002] [Jin et al., KDD 2011, TKDD 2014] [Chen et al. ICDE 2020]

ECML-PKDD 2020 Tutorial: https://sites.google.com/site/tutorialrole



https://sites.google.com/site/tutorialrole

Feature-based Methods M

Feature Construction
General framework of feature-based |

: featur
methods consists of two steps: -
o feature extraction
e role assighnment

I‘I

—

Role Assignment

ECML-PKDD 2020 Tutorial: https://sites.google.com/site/tutorialrole



https://sites.google.com/site/tutorialrole

Feature-based Methods: Feature Extraction

N
J
N [ N\ )
. . . Calculated
Graph Theories Social Theories
Features
2N 2N J
\/2 g 3 Y4 N [ Y4 Y4 N\ duct Y4 )
_ nd order: : product,
1steorder. e.g., ordHelng'heer Homoohil Triadic Structural sum, min, Network
9., common . €.9., phily closure holes max, embedding
degrees neighbors centrality average
AN AN 2N AN AN 2N AN J

ECML-PKDD 2020 Tutorial: https://sites.google.com/site/tutorialrole



https://sites.google.com/site/tutorialrole

Blockmodel-based Methods

* Aim to solve the role analytics problem based on
stochastic equivalence

* Two nodesiandj are stochastically equivalent if
they are “exchangeable” w.r.t. a probability distribution.

 The probability distribution of the graph must remain
the same when equivalent nodes are exchanged.

 Generative models based on Bayesian statistics

ECML-PKDD 2020 Tutorial: https://sites.google.com/site/tutorialrole



https://sites.google.com/site/tutorialrole

StOChaStIC BlOCkfﬂOdEl (SBM) [Holland et al., Social Networks, 1983]

* A stochastic blockmodel (SBM) is a generative model that yields a
probability distribution over the set of possible role assignments to
nodes given the observed structure of a network.

* a partition of the node set into disjoint subsets C,, C,,..., C,
* asymmetric matrix P, of role interaction probabilities.

Inference
ECML-PKDD 2020 Tutorial: https://sites.google.com/site/tutorialrole



https://sites.google.com/site/tutorialrole

Embedding-based Methods

Network embedding methods aim at learning low-dimensional latent
representations of nodes in a graph.

. preserve the graph structures

- can be used as features for downstream tasks

L4 el —-1.4}
28

1.6}

—-1.8}




NRL: Preserving Structures

Network representation learning (NRL) aims at learning low-dimensional latent
representations of nodes in a graph which can preserve the graph structures

o o o ° o
by \,.. ' "*-.' . What graph structures to preserve?
.. p ,.” 7 ® (o
L

X’ e L

S \(\\0 ,O( 00 o

$®\oo Q\\Qo ((\((\ O&{\‘o c

O @ <«

Local Global



Network Embedding: Issues

3 5 9

10 = Y

e Role: Global Structures

e Random Walk? 1e® LINE




The Taxonomy of RONE methods :

The Aim of Role-oriented Network Embedding (RONE) methods :

Role-oriented
Embedding methods

)

Discrete Structure Continuous Embeddings

» The two-step process of RONE methods to bridge the
gulf between two spaces :
a. Structure Property Extraction
b. Embeddings

TU/e




The Taxonomy of RONE methods :

a. Structure Property Extraction:
1.Some methods leverage structural features such as node degrees
and triangle numbers. (RolX [1]; DRNE [2])

AN ENRRCEENEACEEECEENR
RN NN NN RN RAN AR
HERCHNRCNENNERC NN ENEECEN
ﬁ Featul:e M L
Extraction !
ERNENRRRCENENRRCRCENR

Input Structual
Network Features

TU/e




The Taxonomy of RONE methods :

a. Structure Property Extraction:
2.Some methods continue to transform the features into continuous
distances or similarities. (SPINE [3])

R
T HCCEENOEE Dist/Sim

it — N —
EECERECH

TR

LTI
Structural Structural
Features Similarities

TU/e




The Taxonomy of RONE methods :

a. Structure Property Extraction:
3.Some methods captureing similarity between node-centric
subgraphs. (struc2vec [4]; SEGK [5])

Dist/Sim -

Computation

Sampling

— Subgraph D .%_‘

Structural
Subgraphs Similaritie
s

Input
Network

@ cCentral Node
O  1-hop Neighbor
O  2-hop Neighbor

TU/e




The Taxonomy of RONE methods :

Input
Network

Feature
Extraction

----‘

Subgraph
Sampling

Seoo

Subgraphs

---‘

l Structual

Features

Central Node
O
@)

1-hop Neighbor
2-hop Neighbor

Jiao, Pengfei, Xuan Guo, Ting Pan, Wang Zhang, and Yulong Pei. "A Survey on Role-Oriented Network Embedding." arXiv preprint arXiv:2107.08379 (2021).

[T T ]
LT ]
q Dist/Sim D >
Computation :
L[]
N

N\ Tianjin University

' Downstream
Tasks

Role-based
E mbeddings

Embedding
Mechanism

Node Classification

Operation Type
-3 -8
Optional Required

Structural
Similarities

TU/e




The new two-level categorization :

Method Embedding Mechanism - Conducted Tasks Year
Vis CLF/CLT | ER/NA/SS LP
RolX v v 73 b3 2012
GLRD b4 X v X 2013
RIDERS on structura‘l feature v 7 v % 2017
GraphWave | marix v % X b3 2018
HONE I v b4 v v 2020
XNetME factorization X X v X 2018
EMBER o X v 4 X 2019
SEGK on Structural‘ﬂmﬂarlty e e 4 % 2019
REACT matrix X v X X 2019
SPaE v v 73 X 2019
strucvec on similarity-biased v v x x 2017
SPINE random random walks s v X » 2019
struc2gauss walk-based v v X b 2020
Role2Vec X X X v 2019
T methods on feature-based 7 7 7 % 2019
NODE2BITS random walks 3 3 v X 2019
DRNE v v X b 2018
GAS v v X b4 2020
RESD deep via structural information v %4 v b4 2021
GraLSP learning reconstruction/guidance v v b4 4 2020
GCC X v v X 2020
RDAA v v x X 2021
CNESE v v v b4 2021

K £ F

& Tianjin University

Jiao, Pengfei, Xuan Guo, Ting Pan, Wang Zhang, and Yulong Pei. "A Survey on Role-Oriented Network Embedding." arXiv preprint arXiv:2107.08379 (2021). I U/e




The new two-level categorization :

Method Embedding Mechanism - Conducted Tasks Year
Vis CLF/CLT ER/NA/SS LP

RolX v v 73 b 201
GLRD b4 b4 v b4 2013
RIDERS on structura‘l feature v 7 v % 2017
GraphWave | marix v % X b3 2018
HONE I v b 4 v v 2020
XNetMF factorization x X v ® 2018
EMBER o X v 4 X 2019
SEGK on Structural‘ﬂmﬂarlty e e 4 % 2019

\ REACT matrix X v X X 2211;1'
"“N\SBaE 4 I X X 2

strucvec on similarity-biased v v x x 2017
SPINE random random walks s v * » 2019
struc2gauss walk-based v v X b 2020
Role2Vec b4 X X v 2019
T methods on feature-based 7 7 7 % 2019
NODE2BITS random walks 3 3 % 3 2019
DRNE v v X x 2018
GAS 4 v X X 2020
RESD deep via structural information v v v b4 2021
GraLSP learning reconstruction/guidance v v b4 4 2020
GCC b4 v v b4 2020
RDAA v v X b4 2021
CNESE v v v b 4 2021

K £ F

& Tianjin University

Jiao, Pengfei, Xuan Guo, Ting Pan, Wang Zhang, and Yulong Pei. "A Survey on Role-Oriented Network Embedding." arXiv preprint arXiv:2107.08379 (2021). I U/e




Low-rank matrix factorization based methods :

S Tianjin University

RolX (Role eXtraction) [1]: Miﬂ.“ﬁ‘;l}i‘l, Ei:?orﬁ

Feature matrix generated by ReFeX [6]:

( | Regional \
[ Neighborhood )
e Neighborhood features )Pilg > O)c\) A

[ Local Y Egonet Y Recursive )

o Local and egonet features,
e.g., degrees

o Representations of
connectivity patterns

e Recursive Features ~

o Calculated features

o Generated using means,
sums and pruning

NMF

Nodes

335
N T [ |

Structural Features Role-oriented Embeddings

minHFReFeX _ HMH2 st HM >0
F

TU/e




Low-rank matrix factorization based methods :

Tianjin University

GLRD: (Guided Learning for Role Discovery) [7]: Structural Feature
Matrix Factorization
A
( A Regional \
(" Neighborhood )
A A A
Recursive )

[ Local Y Egonet Y

2
, s.t. HHM >0
F

{{%\%‘ \FRGFBX . HM\

=

A
Nodes \

Optional Constraints in GLRD.
=g
Constraint Formula
Vi H.,,; <e€
Sparsity i = e

Vi Mg, < em

Vi,j HIH. <eg i#j
Vi,j MyM] <em i#j

Structural Features Role-oriented Embeddings Vij HTH, < e i %5

Alternativeness

Diversity

Vi,j MM <em i#j

TU/e




Low-rank matrix factorization based methods :

GLRD: (Guided Learning for Role Discovery) [7]:

{Inil\r/}HFRepex _ HMH2 sl H,M >0

Optional Constraints in GLRD.

Constraint Formula
Vi ||H.; < ¢
Sparsity IELilly < en
Vi M.l <em
Vi, i H H.; <eg i 47
Diversity J HiHg < e 177

Vi, ] MiMJ <em i #

Vi, HYTH.: < epg i £
Alternativeness v

Vi,j MiMJ <em i#]

Tianjin University

Structural Feature
Matrix Factorization

Types On Role Membership Matrix (G) On Role-Feature Association Matrix (F)

Sparsity | Encourages role assignments to be Increases ability to interpret role by using
more definitive; feature most strongly correlated with role;
Reduces number of nodes that have Decreases likelihood that features with
minority membership in role. small explanatory benefit be included.

Diversity | Roles cannot have memberships that Roles cannot have definitions that are too
are too similar; similar;
Limits amount of allowable overlap in | Roles must be explained with completely
assignments. different sets of features.

Alternativ | Find a role that lends itself to a Learn a role definition matrix that is

e different role assignment than a significantly different than a provided role

provided one;
Decreases the allowable similarity
between two sets of role assignments

definition;
Ensures that the definitions must be very
dissimilar.

TU/e




Low-rank matrix factorization based methods :

RIDERSs: ((Role Identification and Discovery MStr}Jc’;ural Feature
using e-equitable Refinement) [8]: e

» Partition nodes into different cells
based on g-equitable refinement:

deg(u,Cj) = [{ul(u,v) € EAv e Cj}
|deg(u,C;) —deg(v.Cj)| <e,Vu,velC;,V1 <i,j <K

Les Mis’erables Network: Roles discovered by €ER

« Compute global features : fore = 2 and € = 6 respectively.

(Fipr)ij = [N NGyl

* Prune and Bin.

|
Structural Features Role-oriented EmbeddirTf{ J /e




Low-rank matrix factorization based methods :

GraphWave [9]:
Spectral graph wavelets:

L =D-A

L = UAU' A = Diag(}A...

¥ = ZUDiag(g (A1), -+, gs(An))U "
Empirical characteristic function:
|
pilt) = 5 D e
n 1

Embedding:
H; = [Re(pi(?)), Im(p;(1))]

"9 )\n)

Structural Feature
Matrix Factorization

lHot

Cold

Diffusion pattern Diffusion pattern

Nodes

Treat spectral graph wavelets as probability distributions.

A B . 1 T T
08 L @ GraphWave |
0.6 |
~ 04 F i
<
8 0.2 . -
0.0 |- . O -
02 @ .
04l Q@ i
-0.6 | 1 1 |
-0.5 0.0 0.5 1.0

PCA 1

2D PCA projection of GraphWave' s embeddings

TU/e




Low-rank matrix factorization based methods :

HONE (Higher-Order Network Embeddings) [10]: Structural Feature

Matrix Factorization

« For each motif, generate k-step embeddings:

arg min ]DBreg(Fgf) ‘\I’(HS\Z) LME\Z)m))

uc) () "

P =D"'A L=D-A
Feature matrix transformed from the k-step
weighted motif adjacency matrix.

« Global embeddings:

Initial h
(a) nifial grap (c) Weighted Y'graph

Weighted Motif Graphs

mmHFHONE — HMH

Concatenated HS@) with all k and m.

" TU/e




Low-rank matrix factorization based methods :

xNetMF (Cross-Network Matrix Factorization) [11]: Structural Simlarity

Structural Role-oriented Nystrém method
1) Select r < nnodes as landmarks randomly or based
Si; = exp(—7ysdists (v, v;) — Yadista(vi, v;)) on node centralities.
2) Compute a node-to-landmark similarity matrix C &
On features On attributes R™*" and extract a landmark-to-landmark similar-

ity matrix B € R"*" from C.
3) Apply Singular Value Decomposition on the pseu-

Fi = |DF,| = |{v; € NJ|[logyd;] = c}| doinverse of B so that B = VXY .
K 4) Obtain embedding matrix H by computing and
1
F, = Z 5’“F,’f normailize CVX ™ 2,
k=1

TU/e




Low-rank matrix factorization based methods :

oV Tianjin University

EMBER (EMBedding Email-based Roles) [13]: Structural Similarity

Matrix Factorization

MF

———)

Structural Role-oriented
Similaritie Embeddings
s
Sij = exp(— [|F; — F]H ) Nystrom method is usd.

|
Feyper = [FT,F7]

Fir= > pw(Pit,,)

’?GDR_I:
RERER AN The product of all edge

Pt o_ s SHREt weights in a k-step shortest
¢ Z ¢ outgoing path
k=1

TU/e




Low-rank matrix factorization based methods :

| x4 Tianjin University

SPaE (hybrid network embedding method that unifies Structural Simlarity
both structural proximity and equivalence (SPaE)) [14]:

MF +
Structural Role-oriented Community-oriented
Similaritie Embeddings Embeddings
S
max Jp = Tr(HpLsHp), st HpHp =T max Jo = Tr(HELAHc), s.t. H{He = L
R '
/ \ J
f
Computed based on HpHe Hy Tr +pr+7(Je +pe) C((j).mputed bafgd on
Graphlet Degree Vectors st.HIHp =LH H-=1H Hy =1L adjacency matrix

pr=Tr(HHyH] Hp) pc =Tr(H.HyH,H¢)

TU/e




Low-rank matrix factorization based methods :

oV Tianjin University

SEGK (Structural Embeddings using Graph Kernels) [5]: Structural Similarity

Matrix Factorization

Structural Role-oriented
Similaritie Embeddings
K S
S;; =Y _ K(GF.¢hK@:.¢k Nystrém method is used:
k=1
_1
~ — 2
Initialization: K(G;.G7) =1 H = SU[T]A[r]
|
Normalization: ;@(g’ G = KG.¢') First r eigenvalues and eigenvectors.

VK(G.G)K(G".G)

TU/e




Summary: Low-rank matrix factorization based methods

Structural Feature Matrix

* Matrix Factorization (MF)
* RolX, GLRD, RIDERs
* Direct embeddings from MF

* Eigen-decomposition
 GraphWave

 Motif factorization
 HONE

N Tianjin University

Structural Similarity Matrix

e Similarity matrix calculation
e Pair-wise calculation is time-
consuming

* Nystrom method to improve the
matrix factorization efficiency

* XNetMF, EMBER, SEGK

TU/e




The new two-level categorization : )KL ¥

”Tianjin University

Method Embedding Mechanism - Conducted Tasks Year
Vis CLF/CLT ER/NA/SS LP
RolX v v 73 b 2012
GLRD b4 X v b 2013
RIDERs on stmc‘mra‘l feature v 7 v % 2017
GraphWave | marix v % X b3 2018
HONE I v b 4 v v 2020
XNetMF factorization x X v ® 2018
EMBER o X v 4 X 2019
SEGK on Structural‘ﬂmﬂarlty e e 4 % 2019
REACT matrix b3 v 3 b3 2019
PN Z P X X oo
[ stwuchvec on similarity-biased v v x x 2017“
SPINE random random walks s v * » 2019
struc2gauss walk-based v v X b 2020
Role2Vec b4 b X v 2019
T methods on feature-based 7 7 7 % 2019
\NODE2BITS random walks 3 3 % 3 2019/
DRNE % 4 X X 2018
GAS 4 v x b 2020
RESD deep via structural information v v v b4 2021
GraLSP learning reconstruction/guidance v v b4 4 2020
GCC b4 v v b 2020
RDAA v v % b4 2021
CNESE v v v X 2021

Jiao, Pengfei, Xuan Guo, Ting Pan, Wang Zhang, and Yulong Pei. "A Survey on Role-Oriented Network Embedding." arXiv preprint arXiv:2107.08379 (2021). I U/e




Random walk based methods :

Tianjin University

sz8 P32
Generated Sequence: 1, 2, 3, 6, ... Generated Sequence: 1, 3, 2, 8, ...
(a) Normal Random Walks (b) Structural Similarity-biased Random Walks (c) Structural Feature-based Random Walks
» Nodes in the same » Nodes in the same context » Nodes have the similar labels
context have high have high structural similarity. have high structural similarity.
proximity.

TU/e




Random walk based methods :

Structural Similarity-
biased Random Walks

— .
[T ]
[T TT]
Input Network Sequences Role-oriented
) Embeddings INPUT PROJECTION  OUTPUT
Compute structural distances:

w(t-2)
dist (v, v;) =dist (v, v;) + DTW(’H;",?{;"),
0< k<K
Build a multi-layer graph: .
In each layer: (Ph ), = we (v; azj))k :
we (v, vf) = exp(—disth (vF, vf)) k=0,..k" Z(vf,v;?,)esg we (v v5)))
Between layers:

we (v, vi T =log(T(vF) +e),k=0,.... k" — 1 Skip-gram

s TU/e

w(t-1)

Walk probability:

w(t+1)

w(t+2)

we (v, v ) =1k=1,.. k"




Random walk based methods :

oV Tianjin University

SPINE (Structural Identity Preserved Inductive Network b;t;:gt;;gi'{‘;"vavgfzs
Embedding) [3]:

Biased
Random

Walks N

[T TT]
Input Network Sequences Role-oriented
Embeddings
Structural features: largest values of Rooted Walk probability:
PageRank Matrix  — (1 — Brpr)(I — BrprP)* o
k we (v; y U )
T (Pav)ij = k (ko k

Structural similarities: DTW or other methods Z(v?,v;?,)ee(’z: we (v, v5i))

based on node features.

TU/e




Random walk based methods :

Tianjin University

. Structural Similarity-
struc29auss [16] biased Random Walks

F A
T\ L (Vi, V2) +
Fa v\ \ e T T (Vi, vg) + Gaussian
m_mlﬁ. BT AW . (vi, vs) + Embedding
"» (V3, Ve) - e EL Energy
m|E =
Similarity measures:/' T — (V4, Vg) - e KL Energy
e SimRank e %
o SimRank++ Similarity —
e  MatchSim Matrix Trammg set
e RoleSim sampling
®
RoleSim:; Energy function:

RoleSi 1 Z(x’)v)eM(u,U) ROl@SiﬂI(X,}‘)
e = _ﬁ)”r’r(l%) IN@)| + IN@)| — [M(u, v)| P L= Z Z max(0, m — E(zv, zu) + E(@vs 2w))

(v,u)el’y (v.u')el- TU/e




Random walk based methods :

NZ¥ Tianjin University

RiWalk (Role identification walk) [18]: SUELTE] FEEe-

based Random Walks

Relabeled
Random Skip-

Walks [T 1] Gram[15]

o Jil HEE

Input Network Sequences Role-oriented
Embeddings

Indicator approximating shortest path kernel: Indicator approximating Weisfeiler-Lehman
sub-tree kernel:

¢sp(v;) = b(d;) o b(d;) 0 545,v; € N Gy (vj) = DAS7) 0o b7 ) 0 555, v; € N

TU/e




Random walk based methods :

S Tianjin University

role2vec [17]:

.

Compute and/or
select attributes

Xy = number of triangles

\Xz = number of 2-stars)

B €m -

Transform each
attribute

(e.g., log-binning with bin

\ size of 0.5) j

Derive roles
from attributes
& assign

Derive set of
attributed

random walks

eg,length=3

W3 Wz W3
W3 W3 wi
.

=/

Structural Feature-

based Ran

dom Walks

-

Compute

embeddings

W3 Wz W3
W3 W3 Wi
.




Random walk based methods : OrEEX ]

# Tianjin University

NODE2BITS [19]: Structural Feature-

based Random Walks

—— Step3 |—
Aggregate the feature-based

Sample R temporal random || Create temporal context via

walks per edge & define multi-dimensional features context and hash It into
node context (e.g., for a) blnzsg rfp{ta-sentgt;:»zs2
At=1 At=p firg At=1 At =2
o-oCm-0 || @ o |0
Nodetypes @ ACH . " . f], ©0 G b Rg b
Edge timestamps —1 u ‘o =H : — - s - .
""" i i i gl o) §] ik
- e g b |Kag G O n 2 dg Create feature histograms per
temporal distance At
'v SimHash
The node-ids in the contexts of Q 101 .1 01
each node (e.g., a, b) are m 000 ..loo1
Feature ™ I > replaced w. their feature values .
Attribute matrix .~ Attributes Structural in the “tensor” - e,
\ J \ matrix features  J\_ \ J

TU/e




Summary: Random walk based methods

Structural Similarity-based RW Structural Feature based RW
Calculating similarity * No consistent frameworks
e Strength: Random walk on * Graph kernels: RiWalk
constructed graph that can e Simhash: NODE2BITS
better capture role

information * Graphlets: Role2Vec

* Weakness: time-consuming
for similarity calculation and
graph construction

TU/e




The new two-level categorization : YK £ Y

”Tianjin University

Method Embedding Mechanism - Conducted Tasks Year
Vis CLF/CLT ER/NA/SS LP
RolX v v 73 b 2012
GLRD b4 X v b4 2013
RIDERS on structura‘l feature v 7 v % 2017
GraphWave | marix v % X b3 2018
HONE I v b 4 v v 2020
XNetMF factorization x X v ® 2018
EMBER o X v 4 X 2019
SEGK on Structural‘ﬂmﬂarlty e e 4 % 2019
REACT matrix b3 v 3 b3 2019
SPaE v v 73 b 2019
strucvec on similarity-biased v v x x 2017
SPINE random random walks s v * » 2019
struc2gauss walk-based v v X b 2020
Role2Vec b4 X X v 2019
T methods on feature-based 7 7 7 % 2019
NODE2BITS random walks X X % X 2019
? DRNE : : § § 2018 il
GAS 4 v X b 2020
RESD deep via structural information v v v b4 2021
GraLSP learning reconstruction/guidance v v b4 4 2020
GCC b4 v v b4 2020
RDAA v v % b4 2021
v v b4

\_ CNESE v 2021 J
TU/e

Jiao, Pengfei, Xuan Guo, Ting Pan, Wang Zhang, and Yulong Pei. "A Survey on Role-Oriented Network Embedding." arXiv preprint arXiv:2107.08379 (2021).




Deep learning methods :

DRNE (Deep recursive network embedding

2" Tianjin University

) [2]:

Structural Information
Reconstruction/Guidance

reconstruct
I Xo I¢ Lhe I
\ LN P LN P LN
© \ ) ) 1
l . | LSTM | [ LST™M | | LSTM
i —> © ‘ . T ! MLP @
@ o] ] [
® \
o N
(b) (c) (d)
Loss for capturing regular equivalence: Embedding of node Loss for degree-guided
v;" s neighbor regularizer:
L2 . g .
Louiv=3_ |[Hi M| Hy) = LNLSTM(H(. Hiio1)  Lag= 3 og(di + 1)~ MLPy, ()’
v; EV v v vi€V
H; = H

TU/e




Deep learning methods :

GAS (Graph Auto-encoder Guided by Structural Structural Information
Information) [20] Reconstruction/Guidance

F Graph convolutional layer:
Feature [ A I—1 [—1
Extraction O@ Normalization H( ) = U(AH( )9( ))
— _'* A -
A =A+I
(a) $ o =i
l \(f o0 5 i .
4 | 1 o
. . 0.2
® e
. . Effectiveness w.r.t the propagation rules of graph convolutional encoder.
he @) |®
(N . —
A — F

@ph Convolutional Encoder Decoder -2
¢~ |[F -
’ TU/e




Deep learning methods :

Tianjin University

RESD (Role-based network Embedding via Structural features _ Structural Information
. . . . Reconstruction/Guidance
reconstruction with Degree-regularized constraint) [21]:

Decoder  \ariational encoder:

Z; = MLP.,.(F;)
pi = WuZi + by,
Ibg(o;) = WsZ; + b,
H, = p, + 0, ® €, e ~ Gaussian(0, I)
- F, = MLP,..(H,)

X  Feature

Matrix (Loss for degree-guided h
regularizer:
Network Licg =Y _ (log(d; + 1) — MLP 4., (H;))?
Feature v €V
O—- Extr:ction . . K j

TU/e




Deep learning methods :

N2 Tianjin University

GraLSP (Graph Neural Networks with Local SUWEIITR. [RBFTEieN:
Structural Patterns) [22] Reconstruction/Guidance

Local Subgraph

W) () pr—1)
1 .\I\.\I ne? _I\IEANwewl je[ |_2|Iu‘ }(aiw(a’i,w Oij ))
(1)

(1) ggl=1) (1)
IReconstruct H ReLU(W‘%E’l fH _I_ Wne ) (Hn@‘i)i )
388888]—|cooo00)
—> —
®@ ®®®© Walk Vectors

DIGIVIOINIO), Anonymous Walks
OIOIOIEINIO < '

-<I>- COO@E®] [ Atetion |5 (T h J
—‘ | |

— " OO0 000
Graph Random Walks [OICIGICITIO) /—O—b[/Ampliﬁcation ]— Representations
Structurally
Adaptive Neighborhoods
v
[ (lveraﬂﬁ)jective ] = [ Walk Proximity Loss ] + [ Node Proximity Loss ]
Lopror = Z Z (logo(H,;H,)
(l) exp(SLPatt (uaw(w))) v; EV v ;EN;
o D eWw, exp(SLP 4t (Waw(wr))) —VregBuy~ P, (v) {loga(HiH;ﬂr)})

a() = SLP 1y (W) TU/e




Deep learning methods :

Tianjin University

GCC (Graph Contrastive Coding) [23]: Structural Information

Reconstruction/Guidance

stggh s Do |, 5 (i = Graph Isomorphic Network [24] encoder:
[ Goc: Gr phC ntrastive Coding || @ || ccc || || ccc || ... |[ coc ][ ecc |

: H") = MLPn (A + (1+¢) - DH(™Y)

"‘%("%é’

3@
«Q%

b .1

o e Contrastive learning loss (InfoNCE[25]):
+
q Z t:xpkH x /1)
Graph £ _log
Graph x1 ncoder -
’ E fc1 v, €V Z o exp(H; XJ/ )

Graph
Encoder

Y
AY
\‘ Graph x*1

ko, ey, kez

Graph x*2

~,
\\
~ A
A 1
) \
1 1
1
' ! ¥ Contrastive
)/ N Simularity—> oo
4
e Graph x*o
| ; |
i
' 3

TU/e




Deep learning methods :

Structural Information

RDAA (Role Discovery-Guided Network Embedding Based Reconstruction/Guidance
on Autoencoder and Attention Mechanism) [26]:

x
r
i (00..00)




Deep learning methods :

CNESE (Learning Stochastic Equivalence based on Re;t;‘s‘f:l:‘crgg':/fgmzt:zz
Discrete Ricci Curvature) [27]:

Olivier's Ricci Curvature:

o, Node j
. ode y ( ) 1 W(mu, mfy)
o R{U,v) = 1 —
> 5 d(u: U)
S
I H Wy, my) =inf Y A(z,y)d(z,y)
Encoder p(Z)) Ricci curvature Decoder A 2, yeV
- oy Z;~p(Z;) —
o — @ - s ) : .
=Di:|>f S Contrastive Learning Regularizer:
© i“ o o
o o . :
2 )O}‘_ — Con - ZEZ ZO_(] )
Approximator Real Discriminator
= Rea + 3" Eplog(1 - DG(H,).
kj < Ud <i| I D === Fake =1
Fake

Z;~q(Z;)




Summary: Deep learning methods

Deep learning architecture + X

« LSTM + regular equivalence = DRNE

« GNN + ReFeX features = GAS / RESD

* GIN + contrastive learning + subgraph patterns = GCC
* Autoencoder + Attention + regular equivalence = RDAA
* Ricci Curvature + contrastive learning = CNESE

TU/e
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Role Analytics Methods: Summary

Equivalence-based
methods

Similarity-based
methods

Role Analytics

Blockmodel-based
methods

Feature-based
methods

Embedding-based
methods

Relations

Combinations



Challenges in Role Analytics

* Interpretable Role Analytics

* Role Analytics in Dynamic Networks
* Role Analytics Evaluation Framework
* Joint Role and Community Detection

* Other types of Embedding Spaces



Interpretable Role Analytics

* Roles often correspond to social
identifications in social science

e Real-world networks:

* the network data is often of a massive
scale

* human labeling is very costly and time-
consuming

What are the meaninig of roles?



14

12

10

[o4]

(s)]

'S

%]

Interpretable Role Analytics

* RolX

hhuﬂ.l,

Avg. Weight

Eccentric ty
al Hole

Clustering Coeff.
PageRank
GateKeeper
GateKeeper-LocaI
Structur:

NodeSense

EENRole 1 EEERole2 CTIRole3 EEERole 4

Role 2

NeighborSense

Default

l \ L4h]

Role 4

e Using graph measures to

interpret roles

Using neighbor information to

interpret roles

Using nodes' attributes to
interpret roles



Interpretable Role Analytics: Challenges

* How to interpret roles using graph measures to
interpret roles? If the measures cannot
distinguish different roles?

e How to make use of other sources of data to
help interpret roles, e.g., meta data of nodes ir
networks.

* It is possible to interpret structural roles by
* Incorporating other roles, e.g., social roles? .




Role Analytics in Dynamic Networks

Real-world networks evolve
with nodes/edges changed/add
ed/deleted

Snapshot t Snapshot t+1

* Different methods to analyze roles in dynamic networks

* Analyze roles in each graph snapshot and then analyze the role
transition, e.g., DBMM

* Analyze roles and role transition simultaneously using a unified
model, e.g., DyNMF and dynamic blockmodels



Role Analytics in Dynamic Networks

- ¢ t t -
9}1 9}2 Q}r
921 922 " Y92

-g:zl 9312 gfz.r'-
Role matrix for
snapshot t

- 1 t t -
9%1 9}2 Q},-
921 922 e 9or
¢ { ¢
-gnl gn? g-n_r-_

Role matrix for
snapshot t

Role transition matrix

%H@:

—

Role transition matrix

t+1 t+1 t4+1
q“ 1 gﬁl q}+1
921 922 G2,

t4+1 _t4+1 t4+1
| 9n1 Gno 2 9nr |

Role matrix for
snapshot t+1

| 41 t+1 t4-17
ahooh o
921~ G227 " Yo
t+1 41 41
[ In1 9n2 “t Ypro

Role matrix for
snapshot t+1

First analyze roles in each
graph snapshot and then
analyze the role transition

Analyze roles and role
transition simultaneously
using a unified model
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Snapshot
t-1

Role Analytics in Dynamic Networks

Vi

Gn XJ'F-I SIlﬂpShOt
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Dynamic NMF for Role Analytics

t t
X M’XI‘ X E’Xf

Historical view

X Fs‘xfr

t+1
I/H xf

Snapshot =

t+1

Current view

f
7

x F. ¢

Basic SBM

time step 1

(=)

- Dynamic SBM for Role Analytics

time step t-1 time step t




Role Analytics in Dynamic Networks: Challenges

e Streaming networks
* Nodes/edges can be added/deleted

e Efficiency
* Role discovery for evolving nodes

* New patterns

. . 030700000 o
* Nodes with new patterns which e 1011700
ﬂ t | wﬂmgg??x%gglg%h@ll991 O1e 159
1 0
reriect new roies ?;ggggéggggg;g;%m1%g§gggeg§@g§%@111e1009119 16 991
d 91

1 A
o 17, 11001 1pg1 19110019 24 013,440
i‘51?#9111@9&19@%@619@@@2%@@1@“’
~%0109900p10001019



Evaluation of Role Analytics - Metrics

Evaluation with
ground truth

Classification

Role .d.lsco.very as a Evaluation-without
classification method
Role discovery as a Evaluation with

i round truth
clustering task ground tru

Clustering

Evaluation
without ground
truth

Precision/Recall

AUC/ROC

NMI

Purity

goodness-of-fit



Goodness-of-fit

e In goodness-of-fit index, it is assumed that the output of a role discovery
method is an optimal model, and nodes belonging to the same role are
predicted to be perfectly structurally equivalent

e goodness-of-fit index can measure how well the representation of roles and the

relations among these roles fit a given network

e Components
o density matrix
o criteria for constructing block matrix
s Zeroblock
= Oneblock
m a-criteria
o block matrix
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Evaluation of Role Analytics - Benckmark

* All the methods for role oriented network embedding are
evaluated on relatively small-scale networks data with
thousands of

* Real-world networks are often of a massive scale, e.g., there
are billions of users in social networks.

* Constructing larger-scale benchmark datasets is very
important to evaluate existing approaches in effectiveness,
efficiency and robustness, and also beneficial for researchers
to develop new models.



Evaluation: Challenges

* Evaluation with ground-truth labels
* Benchmark datasets

* Evaluation without ground-truth labels

* How to capture other equivalence relations, e.g. regular
equivalence

* Generalized modularity

 Evaluation with large-scale benchmarks
e Constructing benchmarks



Joint Role and Community Detection

/Global structure. It reflects the
topological properties of
graphs through the unbounded
observation of the input graph as an

\entirety J

Roles VS Communities:
o Roles shown in different colors
o E.g., yellow nodes are bridges
« Communities shown inside the ellipses
o Denser internal connections inside
each community

Local structure. It captures )
the topological properties of graphs
by observing a bounded part of the

\_input graph Y,




RC_.J Ol ﬂt [Ruan and Parthasarathy, COSN 2014]

maxc (Likelihood(G, C))

subjectiEl---Nc,jEL--Nr

C' = UpdateComm(G,C'~' R'™! N,) Diversit

.o Likelihood(G,C')—Likelihood(G,C1™1)

if Likelihood(G,Ci—1) < Ocomm th)en
CONVecomm < true > Communities converge

end if

C° < InitComm(G, N.)
R° « InitRole(G, N,)

R' = UpdateComm(G, R, C'N,)
if ||R" — R || ;maz < role then
CONVrole — true > Roles converge

end if

[{u € T'y| argmax;s (¢, ) = arg max;s (cyir) }
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Mixed Membership Community and Role (cene:

al., SDM 2016]

—

\'.
A

(¢, Y

\2/

N,

Con;n]unlty For each entry (k,p,q) in B (k can take O here):
M in
oae g - Draw Bk-,p,q ~ Beta’(éfi,p,qagﬁ,p,q)

For each node #:

s ; T : 2
- Draw a community membership distribution vector ;

~ Dirichlet(a®)

- J
(- Draw a role membership distribution vector 6; ~
_ Dirichlet(a") )
For each node pair (7, j):
(- Draw node i’s community Z;; ~ Multinomial(7;) A
(- Draw node j’s community Z£; ~ Multinomial(7;) )
' (- Draw node #’s role Z;; ~ Multinomial(6;) A
- Draw node j’s role Zj; ~ Multinomial(6,) )
ROIe . - Draw link Eij ~ Bernoulli(B(g(ij,Z;i),zgj’Z;‘i)
Modeling



REACT (RolE And Community deTection)

[Pei et al., ASONAM 2019]

Adjacency matrix Community detection Local communities and global

C X . X C roles enhance each other

L Community-Role
2,1

. Diversity relation |

\ S - R x M x R The distribution of role assignment
' inside each community to be

RoleSim matrix Role discovery diverse




Joint Role and Community Detection: Challenges

 How to formally define and model the relations between
roles and communities?

* Other relations except diveristy?

* Unified model (MMCR, REACT) or iterative model (RC-
Joint)?




Other Types of Embedding Spaces

Euclidean space




Challenges in Role Analytics

* Interpretable Role Analytics

* Role Analytics in Dynamic Networks
* Role Analytics Evaluation Framework
* Joint Role and Community Detection

* Other types of Embedding Spaces



Conclusions and Future Directions

Conclusions Future Directions

Solutions to These Challenges
Bridging Roles with GNN
Applying Roles in Practical
Problems

* Equivalence Relations

 Taxonomy of Role Analytics
Methods

e Role-oriented network
embedding

* Challenges in Role Analytics CONCLUSIONS
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